

ALSHA Core Application Note

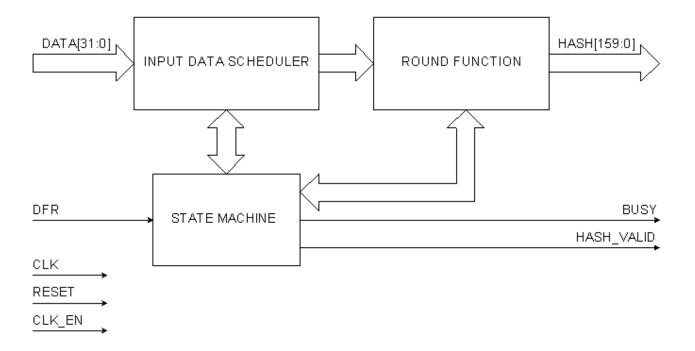
Rev. [6/2012] 6-19-2012

ALSHA Core Application Note

Table of Contents

General Information	3
Features	3
Block Diagram	3
Contents	4
Synthesizable	4
Test Vectors	4
Interface	4
Implementation Data	5
Deliverables	

General Information


The ALSHA core is the VHDL model of the processor that performs SHA-1 hash function calculation. The model is fully compliant with FIPS180-1.

Features

- Byte oriented hash calculation
- Hash value of 512-bit message is calculated in 81 clock cycles
- Suitable for fast Digital Signature Algorithm implementations
- No dead clock cycles
- Simple interface and timing
- Fully synchronous design

Block Diagram

The basic structure of the ALDES core is shown below:

Contents

Synthesizable

See the Deliverables section of this document for further details.

Test Vectors

See the **Deliverables** section of this document for further details.

Interface

The pinout of the ALSHA core has not been fixed to specific FPGA I/O, allowing flexibility with a user's application. Signal names are shown in the table.

Signal Name	Signal Direction	Polarity	Description	
CLK	IN	-	Clock input	
RESET	IN	HIGH	Asynchronous reset	
CLK_EN	IN	HIGH	Clock enable	
DFR	IN	HIGH	Data frame: 1- data are loaded, 0 – end of data	
DATA[31:0]	IN	-	Input data	
HASH_VALID	ОИТ	HIGH	Hash ready signal	
BUSY	OUT	-	Busy signal, 1 - processor is busy, 0 - data can be loaded	
HASH[159:0]	ОИТ	-	Output hash data	

Data processing begins with DFR setting to HIGH. When CLK_EN is set to HIGH then core reacts on CLK signal. While data are processed by ALSHA core BUSY signal indicates that processor is busy. If set LOW, then the input data signal IN_DATA can be changed, when set HIGH, the processor will not load input data to itself. Result of calculation appears at the HASH output and it is followed by HASH_VALID signal in HIGH.

Implementation Data

The core has been synthesized and implemented to different types of reprogrammable devices. The model has been verified using the simulation environment and tested on the real hardware.

Software							
Synthesis Tool	Synopsys FPGA Express™ build 2.1.3.3220						
Implementation Tools	Xilinx Foundation™ 2.1i SP6, Altera MAX+plusII™ 9.4, Quartus™ 2000.02						
Verification Tool	Active-HDL™ 4.1						
Hardware							
Vendor	Xilinx			Altera			
Device Family	4K	Virtex™	FLEX™ 10K	APEX™ 20K			
Target Device	XC4044XL-09	XCV300-6	EPF10K50-1	EP20K100-1			
Area	704CLBs	1016Slices	1947LCs	1413LCs			
System Clock fmax	23MHz	52MHz	27MHz	64MHz			

Deliverables

After you request the desired compiled synthesizable core, Aldec delivers the following files:

- Technology-dependent EDIF (ALSHA.EDF) and VHDL (ALSHA.VHD) netlists
- Test vectors and patterns
- User-Guide and Application Notes
- Sample designs
- Software emulator of ALSHA core

Usually Aldec delivers both EDIF and VHDL netlists for customers who order the synthesizable model. The EDIF netlist is used for the place and route process and VHDL is the post-synthesis netlist used for the simulation only. Of course, both netlists are technology-dependent, because they are created after the synthesis where the customer needs to specify a vendor, target family, etc.

Software emulator of ALSHA core is intended to use as «golden» source for patterns from user-provided set of data.

Aldec can provide also a set of VHDL test benches for their cores. Usually they are sold at the additional charge.

Source codes are sold on a case-by-case basis.

